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Analyses of load tests on 100 instrumented bored piles in different weathering grades of different tropical geological
formations of peninsular Malaysia enabled correlations of ultimate shaft and base resistance with standard
penetration test (SPT) results and unconfined compression strengths. The data also enabled development of shaft
resistance (t–z) and base resistance (q–w) models that are related to SPT, unconfined compressive strength and rock
types. The t–z models can be used for strain softening and strain hardening while the q–w models are for strain
hardening and stiffening behaviour. The models thus developed were applied for analysis of 35 piles in the database
that were loaded until the load–settlement curves were significantly non-linear. Most of the analyses resulted in a
reasonable match with the measured load–settlement and load-transfer curves up to 1.5 times the pile working load,
regardless of whether the q–w function was strain hardening or stiffening. Accurate matching with measured load–
settlement and load-transfer curves for 1.5–3 times working load was conditional on the correct choice of the q–w
function. The models were further tested against 27 published load test results from across the world.

Notation
A coefficient relating fbu to qu, G to N and qmax to qu
B coefficient relating G to N
Cu undrained shear strength
fb base resistance (kPa)
fba allowable base resistance
fbu or qmax ultimate base resistance
fs pile shaft friction
fsa allowable shaft resistance
fsu ultimate shaft resistance
G shear modulus
IGM Intermediate Geomaterials – appears in Figs 2–5
Kb coefficient relating ultimate base resistance to

standard penetration test (SPT) N
kib initial stiffness of strain hardening q–w curve

(kPa/mm)
kib2 stiffness at higher toe settlement of stiffening

q–w curve (kPa/mm)
kis initial stiffness of t–z curve (kPa/mm)
Ks coefficient relating ultimate shaft resistance to SPT N
l pile length
n number of samples and a variables in Tsai model
pa atmospheric pressure, 100 kPa

q base resistance
qu unconfined compressive strength
R constant in Ramberg and Osgood model

that controls the curvature of the ascending
curve. Higher R increases the curvature; see
Figure 13

r constant in Tsai model that controls the curvature.
Higher r values result in higher degrees of strain
softening; see Figure 13

rm distance where shear stress becomes negligible,
rm= 2.5 l (1− ν) where l pile length

r0 radius of pile
r2 coefficient of determination
N blow count in SPT
T constant that influences the curvature of the curve.

Higher T increases the curvature. T > 1 for strain
hardening q–w curve and 0 <T < 0 for stiffening
q–w curve; see Figure 14

t shaft resistance
σX̄ standard error
α constant in Ramberg and Osgood model that

controls the displacement at fsu. Higher α increases
the displacement at fsu; see Figure 13
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α, αq coefficients relating fsu to qu (Seidel and
Collingwood, 2001)

αc coefficient relating fsu to Cu (Kulhawy and Phoon,
1993)

β constant that influences the pile toe settlement at
fbu. Higher β increases the pile toe settlement at fbu;
see Figure 14.

δs or z shaft displacement
δsu shaft displacement at fsu
δb or w pile toe settlement / pile diameter (%)
ν Poisson’s ratio
ψ, β coefficient relating αc to qu / 2Pa (Kulhawy and

Phoon, 1993)

1. Introduction
One hundred instrumented test piles were analysed to obtain
correlations of ultimate shaft and base resistance with strength.
These piles were instrumented and either loaded at the top in
the conventional manner of maintained load tests or by use of
bi-directional load cells. The piles were constructed through
different weathering grades of clastic and non-clastic sedimen-
tary, meta-sedimentary, metamorphic and granite rocks of
peninsular Malaysia. The list and salient features of the test
piles are summarised in Appendix 1.

Correlations of ultimate shaft resistance with strength for the
entire weathering profile from grade VI to grade I of the differ-
ent geological formations were obtained from the results.
There is a broad trend in the correlations, similar to those pub-
lished by others, but as would be expected there is also appreci-
able scatter. Only five piles were loaded until ultimate pile
capacity, which is defined as when the ultimate shaft and ulti-
mate base resistances have been fully mobilised and at which
load the pile settlement will continue unabated.

Strain-softening shaft behaviour was found to be prevalent for
standard penetration test (SPT) N values of up to 30, whereas
strain-hardening behaviour was more common for higher
strengths. For shaft resistance, the Tsai (1988) function orig-
inally developed for concrete and the Ramberg and Osgood
(1943) function for alloys were adapted for use as shaft resist-
ance–vertical displacement (t–z) curves for strain-softening and
strain-hardening behaviour, respectively. For base resistance,
the measured base resistance–base displacement (q–w) curves
are either linear elastic with strain hardening or that which
stiffens with increasing pile toe pressure. The Ramberg and
Osgood model was used to model both types of q–w curves.
Characteristic t–z and q–w models were developed for different
SPT N and qu values representative of the entire spectrum of
weathering, with strengths from stiff to very hard and from
very weak to moderately strong, as well as different rock types.

These models were then tested to compare the full axial com-
pression load–settlement curve and load-transfer curves for 35
instrumented test piles from the database and subsequently tested

against 27 published test results from across the world. The
results are encouraging, with most analyses resulting in a reason-
able match with the measured load–settlement and load-transfer
curves up to 1.5 times the pile working load, regardless of whether
the q–w function was strain hardening or stiffening. Accurate
matching with measured load–settlement and load-transfer
curves beyond 1.5 times working load and until 3 times working
loadwas conditional on the correct choice of the q–w function.

In this paper the term soil is applied to unconsolidated sedi-
ments, for example, tin tailings and alluvial deposits and com-
pletely weathered rock (grade VI of the weathering profile).
Other materials of the weathering profile will be described as
rock of the appropriate weathering grade (grade I to grade V).

2 Geological formations
All the piles were in the three main rock formations, as follows

(a) clastic sedimentary and meta-sedimentary rocks that
occur over about 40% of the land area of peninsular
Malaysia and include shales, siltstones, sandstones,
mudstones, gneiss, schists and phyllites; these rocks are
often highly folded and fractured

(b) igneous intrusions, mainly granite and some intermediate
to basic rocks, that occur over about 40% of the land
mass of peninsular Malaysia

(c) limestone in the capital city Kuala Lumpur, Ipoh and
Kuching cities.

The weathering classification scheme adopted in this paper
follows that by the Geological Society Engineering Group
Working Party (EGGS, 1990). Depth of weathering can extend
to more than 40 m. Weathering profiles in sedimentary for-
mations are more complex than granite formations due to
inhomogeneity (layering) and textural variations of the rock.
Table 1 gives typical depths and thicknesses of the different
weathering horizons in igneous and sedimentary formations.

Limestone, a non-clastic sedimentary rock, has particular char-
acteristics that differentiate it from clastic sedimentary rocks.
Despite the fact that its spatial occurrence is far less widespread
than granites and sedimentary rocks, limestone is of significance
in that it occurs over commercially important parts of the
capital city. The nature of the limestone is described by Yeap
(1985). A range of soil types are found above limestone and
include alluvium, tin tailings, weathered clastic sedimentary and
metamorphic rocks. Granite intrusions can occur next to lime-
stone. The properties of the weathered granite and sedimentary
formations can be severely affected by proximity to limestone.
In contact zones between limestone and granite, the depth to
limestone rock can exceed 100 m (Yeap, 1985).

3. Bored piles in different geological
formations

Bored piles in sedimentary clastic and metamorphic format-
ions are very commonly constructed through the weathering
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profile from grade VI to grade III, deriving most of the shaft
resistance from the weathered rocks that transcend from very
stiff (15 < SPT N<30), to hard (30<SPT N<50) to very hard
soils (SPT N>50) or extremely weak (qu < 0.6 MPa), very
weak (0.6 < qu < 1.25 MPa), weak (1.25< qu < 5.0 MPa) and
moderately weak (5.0 < qu < 12.5 MPa) rocks. The very weak
to moderately weak rocks are commonly highly fractured.

Bored piles in granites commonly extend through the weather-
ing profile (grade VI to grade III) and socketed into grade I
and II rocks. Bored piles in limestone, with alluvium, tin tail-
ings, clastic sedimentary and metamorphic rocks above the
limestone are often socketed into moderately weathered (grade
III) to fresh (grade I) limestone rock.

4. Standard penetration test for weathering
grades III to VI

The friable nature of the soils and extremely weak to moder-
ately weak rocks prevents recovery of a suitable size undis-
turbed samples for laboratory strength tests. Attempts at
recovering samples using retractable type triple tube core
barrels very often result in poor recovery and highly fractured
samples that cannot be used for unconfined compression tests.
Hence, and in view of heterogeneity that can be severe, design
procedures are based on the standard penetration test (SPT);
larger numbers of boreholes with SPTs are preferred to fewer
boreholes with pressuremeter tests and recovery of intact
samples for laboratory strength tests. The cost of a pressure-
meter test is about ten times the cost of a SPT.

The strengths of the very hard soils and extremely weak to
moderately weak rocks are higher than that corresponding to
SPT N of 50/300 mm penetration. The practice of determining
the N value is not by dropping the hammer repeatedly until
300 mm penetration, but rather by measuring the penetration
of the hammer up to 50 blows and linearly extrapolating the
SPT N in the manner described by Thompson and Leach
(1988). Attempts at repeated blows to achieve a 300 mm pen-
etration are not carried out as it almost invariably leads to
damage to the SPT sampler as well as to the rods.

Stroud (1974) showed that the ratio of Cu to SPT N is between
4 and 6, with the higher coefficient for lower plasticity index of
less than 20%. Wong and Singh (1996) reported an average

ratio of 4 for sedimentary formations around Kuala Lumpur
with plasticity index of between 20 and 30%. The plasticity
index values for grades III to VI granites and siltstones and
sandstones are typically between 10 and 20%. Following
Stroud (1974), the ratio would be close to 5. The use of the
ratio in this paper is only to enable comparison of shaft and
base resistance factors and shear modulus that are related to
SPT N with the data from Kulhawy and Phoon (1993), Zhang
and Einstein (1998) and others that are related to Cu or qu.

5. Local methods of pile construction and
shaft roughness

Soil auger and soil boring buckets are commonly used to bore
through hard and very hard soils and extremely weak and very
weak rocks; the former for dry and the latter for wet conditions.
Tapered soil augers equipped with round shank chisels are com-
monly used to bore through very weak and weak rock. Core
barrels with round shank chisels are used for weak rock, moder-
ately weak rocks and moderately strong rocks. Often for moder-
ately strong and strong rock the entire rock core is retrieved by
the core barrel; rougher surfaces result when roller bits are used.
If the core cannot be retrieved using a core barrel, a cross-cutter
is used to break the rock after a ring has been cut by the core
barrel. Core barrels with roller bits followed by cross-cutters are
used for strong and very strong rocks.

Stabilisation of pile borings is often by use of a relatively short
casing, commonly between 6 and 12 m, with drilling fluid
often being water, bentonite or polymer. Base cleaning is most
often by repeated use of a cleaning bucket. Other methods in
use include air lifting or a submersible sand pump, which also
serves the purpose for de-sanding and re-circulating bentonite.
When polymers are used in silty soils, a coagulant is sometimes
added to accelerate sedimentation, followed an hour later by
repeated use of a cleaning bucket to remove the coagulated
sediments. Concreting is by the tremie method, even if the pile
boring is dry. Direct discharge of concrete into a dry hole is
not encouraged as experience has it that lower shaft resistances
result.

An assessment of pile shaft roughness for piles installed in the
manner described above was carried out by measuring the sur-
faces of contiguous bored piles exposed during basement exca-
vation. The measured roughness falls within the bounds by

Table 1. Typical weathering profiles

Igneous Clastic sedimentary

Thickness of grade VI and V vary up to 20 m Grade VI is generally thin and of the order of 5 m
Thickness of grade V is of the order of 5 to 10 m

Thickness of grade IV can be about 10 m Grade IV and III are relatively thick and often greater than 20 to 30 m
Depth to grade III can be about 30 m to 40 m
Thickness of grade III is about 10 m
Depth to grade II often between 40 m to 50 m Grade II is often more than 40 m deep
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Seidel and Collingwood (2001) and is in the range of mostly
3–17 mm, corresponding to a roughness class that is
mostly R3 but also R4, following the classification by Pells
(1999).

6. Design equations and parameters

6.1 Shaft resistance
The two common shaft resistance equations are:

fsu kPað Þ ¼ KsN

and

fsu ¼ αqβu ¼ αqqu

Seidel and Collingwood, 2001) with αq = αqu
β−1

Relating αq to Ks requires assuming a correlation between Cu

and N. Assuming Cu (kPa) = 5N or qu (kPa) = 10N leads to the
following convenient equation.

αq ¼ Ks=10

The Ks values that are commonly adopted for design in
Malaysia are given in Table 2. For weak rocks of weathering
grades III and IV, the highest SPT N value is limited to 150 or
200. Malaysia does not have a foundation code that stipulates
the Ks values for design. However, the Singapore foundation
code CP4 (SSC, 2003) recommends Ks of between 1.5 and 3.0
and limiting the ultimate shaft resistance to 150 kPa for clays
and 300 kPa for sands and cemented soils. The use of Ks of 2.5
is the same as adopting a pile adhesion factor of 0.5 for bored
piles in clay (Fleming et al., 2008) and assuming Cu= 5N.

6.2 Base resistance
The ultimate base resistance is given by

fbu kPað Þ ¼ KbN

Kb of 30 is commonly adopted in design.

Assuming a factor of safety of 3 for base resistance.

fba ¼ 30N=3 ¼ 10N

Assuming Cu = 4N, 5N and 6N leads to fba of 1.25qu, 1.0qu
and 0.83qu, respectively. This is in line with the proposals by
Rowe and Armitage (1987) and Fleming et al. (2008) to adopt
the expression:

fba ¼ qu

7. Instrumented test piles
All the bored piles were instrumented using vibrating wire
strain gauges or the Glostrext displacement gauges (Hanifah
and Lee, 2006), which measure pile shortening rather than
strains. Telltales are often included to check the settlements
computed from integration of strains. These piles were tested
in the different geological formations throughout peninsular
Malaysia between the years 1990 and 2018. Resistant wire
strain gauges were used for pile instrumentation until about
1998. Vibrating wire gauges and the Glostrext system have
been in use since 1998 and 2004, respectively.

In all cases a borehole with SPT is located close to the pile,
thereby enabling correlations of the shaft and base parameters
with SPT N values. However, in the case of piles in grade I, II
and III rock, although the rock quality designations (RQDs)
were recorded in the borehole next to the test pile, unconfined
compression tests were not always carried out. In this paper,
correlations with unconfined compression strength were made
only if the test was carried out next to the pile.

8. Shaft resistance from test piles

8.1 Ks plotted against SPT N
Figure 1 is the plot of all the shaft resistance parameters Ks

( fsu/N ) from the strain and displacement gauges. The data

Table 2. Commonly adopted design parameters

SPT N along the pile shaft Maximum permissible Ks

<10 3.5
11<N<50 3.0
51<N<100 2.5
101<N<150 2.0

24

22

20

18

16

14

12

10

8

6

4

2

0

Ks

0 50 100 150 200

SPT N

fsu

fsmax (<fsu)
Toh et al. (1989)
Commonly adopted
Ks in Malaysia
Upper bound fsu
Lower bound fsu

Mean fsu
Median fsu

n = 169, r2 = 0.68, σX– = 0.26

Figure 1. Measured Ks plotted against SPT N
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plotted include the ultimate shaft resistance, as well as the
maximum mobilised values where the ultimate shaft resistance
had not been reached (Ks = fsmax/N ). However, only the shaft
friction coefficients calculated from fsu, totalling 169 data
points, are included in the derivation of the empirical
equations and the mean, median, lower bound and upper
bound lines. The limited data by Toh et al. (1989) are included
and found to be in good agreement. The trend is one of redu-
cing Ks values with increasing SPT N with Ks ranging from 5
to 20 at low SPT N of less than 10 to about 2 for SPT N of
100 to 200. The parameters commonly adopted in Malaysia
are included therein and are shown to be conservative.

Mean and median are included in Figure 1. The mean is from
linear regression analysis, whereas the median is estimated sep-
arately for small intervals of SPT N values. The difference
between mean and median values for SPT N greater than 50 is
small. For SPT N less than 50, the median line is below the
mean.

Figure 2 is the plot of Ks against N on log scales. The lower
bound (visually determined), mean (linear regression) and
upper bound (visually determined) lines of the yielded points
can be approximated by:

Lower bound : Ks ¼ 8 SPT N�0:5

Mean : Ks ¼ 29 SPT N�0:5

Upper bound : Ks ¼ 88 SPT N�0:5

8.2 αc and αq against qu

Figure 3 shows the authors’ data (assuming Cu = 5N ) plotted
as αc against qu/2Pa compared with the data by Kulhawy
and Phoon (1993). The data of Kulhawy and Phoon (1993)
showed two distinct trend lines: an upper band for rocks
extending from qu of about 0.4 to about 80 MPa and a
lower band for clays with qu from about 0.04 to 0.6 MPa.
Kulhawy and Phoon (1993) proposed a general equation for
piles:

αc ¼ ψ qu=2Pað Þ�β

with β=0.5 and ψ of 0.5 for clay and between 1.0 and 3.0 for
rocks.

The authors’ data fall above Kulhawy and Phoon’s data for
clay, but follow their general trend line for rock. The authors’
data are also plotted as αq against qu and compared with those
by Kulhawy and Phoon (1993) in the manner presented by
Seidel and Collingwood (2001) in Figure 4, assuming Cu= 5N.
The data presented in Figures 3 and 4 show that the trend line
for rock established by Kulhawy and Phoon (1993) from weak
to strong rock is similar to that from the authors’ data for firm
to hard soils (grade VI) and weathered rock of grades I to V.
Broadly the same correlation of ultimate shaft resistance with
strength holds for the full strength range from 0.02 to 80 MPa,
albeit with scatter, and can be represented by the following
equations:

Lower bound αq ¼ 0:08q�0:5
u corresponding to ψ

¼ 0:36 and β ¼ 0:5

10

1

0.1

0.01

αc

αc =

0.1 1 10 100 1000

qu /2pa

RockSoil

Soft Med. Stiff V. stiff Hard IGM Weak Medium Strong V. strong

Toh et al. (1989)
Piles in clay, Kulhawy and Phoon (1993)
Piles in rock, Kulhawy and Phoon (1993)

Rough socket in shale, Kulhawy and Phoon (1993)

fsu

n = 169, r2 = 0.68, σX
– = 0.26

ψ

ψ = 3.94, β = 0.5

ψ = 1.30, β = 0.5

ψ = 0.36, β = 0.5

qu
2pa

–β

( (

Figure 3. Measured and Kulhawy and Phoon’s αc plotted against
normalised qu

1000

100

10

1

0.1

0.01

Ks

1 10 100 200 10 100 1000

qu: MPa

fsu

fsmax (<fsu)
Toh et al. (1989)

Upper bound fsu
Lower bound fsu

Mean fsu

n = 169, r2 = 0.68, σX
– = 0.26

Ks = 88 SPT N –0.5

Ks = 29 SPT N –0.5

Ks = 8 SPT N –0.5

Soil Rock
Soft Med. Stiff V. stiff Hard IGM Weak Medium Strong V. strong

SPT N

Figure 2. Measured Ks plotted against SPT N log-log scale
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Mean αq ¼ 0:29q�0:5
u corresponding to ψ

¼ 1:30 and β ¼ 0:5

Upper bound αq ¼ 0:88q�0:5
u corresponding to ψ

¼ 3:94 and β ¼ 0:5

where the upper and lower bound lines were visually deter-
mined and the mean from linear regression.

The coefficient of determination and standard error of the
mean line in Figures 2–4 are 0.68 and 0.26, respectively,
compared to Kulhawy and Phoon’s coefficient of determi-
nation of between 0.461 to 0.768 and standard error of 0.089
to 0.252.

Figure 5 is the same plot as Figure 4 except that different cor-
relations Cu = 4N, 5N and 6N are all used. The purpose is to
demonstrate that the different correlations do not have a sig-
nificant effect on the lower bound, mean and upper bound
relationship between αq and qu.

The α and β values are compared to those by others as sum-
marised by Seidel and Collingwood (2001) in Table 3.

9. Base resistance from test piles
Of the 100 piles only 12 piles were loaded until the base
pressure reached the ultimate base capacity or a pile toe displa-
cement of 4.5% pile diameter (following the criteria by Ng
et al. (2001) for piles in saprolites and other weathered rock in
Hong Kong). Pells (1999) reported that ultimate base
capacities are attained at displacements exceeding 5% of the

pile diameter. Williams and Pells (1981) showed that the ulti-
mate base resistance can exceed 10qu for pile embedment
exceeding five pile diameters.

Kb from defining ultimate base resistance as either ultimate
pile capacity or the pressure corresponding to pile toe displace-
ment of 4.5% are plotted against SPT N in Figure 6; the Kb

values range from 20 to 90. Zhang and Einstein (1998) showed
that the ultimate base resistance can be represented by:

fbu ¼ A quð Þ0:5

with A=6.6, 4.8 and 3.0 for the upper bound, mean and lower
bound, respectively.

The authors’ data are plotted against the bounds by Zhang
and Einstein (1998) in Figure 7 assuming Cu= 4N, 5N and 6N.
The upper bound is similar to that by Zhang and Einstein but

100

10

1

0.1

0.01

0.001

αq

10.10.01 10 100 1000

qu: MPa

Soft Med. Stiff V. stiff Hard IGM Weak Medium Strong V. strong

Soil Rock

Toh et al. (1989)
Piles in clay, Kulhawy and Phoon (1993)
Piles in rock, Kulhawy and Phoon (1993)

fsu

n = 169, r2 = 0.68, σX
– = 0.26

Upper bound fsu

Lower bound fsu

Mean fsu

αq = 0.88 qu
–0.5

αq = 0.29 qu
–0.5

αq = 0.08 qu
–0.5

Figure 4. Measured and Kulhawy and Phoon’s αq plotted
against qu

100

10

1

0.1

0.01

0.001

αq

10.10.01 10 100 1000
qu: MPa

αq = 0.88 qu
–0.5

αq = 0.29 qu
–0.5

αq = 0.08 qu
–0.5

Toh et al. (1989)
Piles in clay, Kulhawy and Phoon (1993)
Piles in rock, Kulhawy and Phoon (1993)

Upper bound fsu

Lower bound fsu

Mean fsu

fsu (Cu = 4N )

fsu (Cu = 5N )

fsu (Cu = 6N )

Soft Med. Stiff V. stiff Hard IGM Weak Medium Strong V. strong

Soil Rock

Figure 5. Measured and Kulhawy and Phoon’s αq against qu
plotted for Cu = 4N, 5N and 6N

Table 3. Comparison of parameters α and β

Design method α β

Horvath and Kenny (1979) 0.31 0.50
Carter and Kulhawy (1988) 0.20 0.50
Williams et al. (1980) 0.44 0.36
Rowe and Armitage (1984) 0.40 0.57
Rosenberg and Journeaux (1976) 0.34 0.51
Reynolds and Kaderbeck (1980) 0.30 1.00
Gupton and Logan (1984) 0.20 1.00
Reese and O’Neill (1988) 0.15 1.00
Toh et al. (1989) 0.25 1.00
This paper lower bound 0.08 0.50
This paper mean 0.29 0.50
This paper upper bound 0.88 0.50
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the lower bound line is appreciably lower, corresponding to A
of 1.6 and a mean line corresponding to A of 4.1. The coeffi-
cient of determination and standard error of the mean line are
0.76 and 0.20. The different assumptions of Cu/N have little
effect on the relationships between fbu and qu.

The Kb value of 30 that is referred to in Section 6.2 is plotted
onto Figure 7. The Kb = 30 line spans across the lines corre-
sponding to A=1.6 for qu of 0.5 MPa to A=4.1 for qu of
2.0 MPa.

10. t–z and q–w curves from test piles
Figures 8(a)–8(e) and 9(a)–9(e) are the shaft resistance–
shaft displacement curves for different SPT N categories

and rock types, respectively, directly from the strain gauges
or displacement gauges in the test piles. The shaft settlement
δs(z) is the total settlement at the same level as the shaft fric-
tion fs(t) and is obtained by integration of the measured
strains with measured top displacement as an end condition.
Shaft friction is obtained from equilibrating the side shear
force with the difference in the axial loads from the strain
gauges between two gauge levels. The pile modulus is the
applied normal stress divided by the vertical strain measured
close to the point of load application. The results are presented
directly as calculated from the strain gauges without curve
smoothening and curve fitting the data points. It is not poss-
ible to normalise the vertical axis by plotting fs/fsu, because
this would require that all the t–z curves had reached fsu,-
which is not the case for a significant number of the
measured curves. Normalising the horizontal axis against the
pile diameter was attempted, but this did not help to reduce
the scatter.

Different shades are used for work softening curves to dis-
tinguish from perfect plasticity and strain hardening behaviour.
As summarised in Table 4, strain softening behaviour was
observed for a majority of the cases where SPT N was less
than 30. The proportion exhibiting strain softening decreases
with increasing strength except when the strength exceeds
6 MPa. For almost all strain hardening t–z curves, there is no
distinct yield stress. The degree of strain softening (the percen-
tage reduction in strength after yield) is of the order of 40%
for materials with SPT N of less than 10 and about 30% for
materials with SPT N of 10 to 30.

The loads reaching the pile toe for many of the tested piles are
relatively low and therefore many of the measured q–w curves
are within the elastic range. However, there is sufficient infor-
mation to show two different types of pile toe behaviour –

namely, strain hardening and stiffening where the stiffness
increases with the pile toe resistance; see Figures 10(a)–10(e)
for strain hardening and Figures 11(a)–11(e) for stiffening be-
haviour. Table 5 summarises the proportion of strain hardening
and stiffening cases.

There are approximately equal proportions of strain hardening
and stiffening curves for materials where SPT N values are up
to 200. For the different rock types, and except for shales, the
limited data indicate that the majority exhibit strain hardening
behaviour.

There are three possible reasons for the stiffening behaviour
and these are listed below

(a) The repeated use of a cleaning bucket to clean the
pile toe in materials of weathering grades III and IV
may leave behind a thin layer of disturbed soil.

(b) Relatively open joints of highly fractured grade I, II and
III rocks close up during load application.
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(c) The effects of orientation of joints as discussed by
Kulhawy et al. (2005) on ultimate base capacities.

The effects of stiffening pile toe on the load–settlement behav-
iour of a pile will be described in Section 16.

11. Shear modulus
Unlike the shear modulus G, kis is not a basic soil property
and is a function of pile diameter and also pile length.

Randolph and Wroth (1978) presented the following equation
relating kis to G.

kis ¼ G
r0 ln rm=r0ð Þ

where rm= 2.5 l (1− ν) and l is the pile length.
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The kis values obtained from the 444 measured t–z curves as
well as from publications were related to the shear modulus G
using Randolph and Wroth’s equation and the G values are
plotted against qu and N in Figure 12 assuming Cu= 5N. The
shear modulus strength relationship may be expressed as:

G ¼ ANB

with A=0.4, 1.6 and 6.3 for the lower bound (visually
determined), mean (linear regression) and upper bound (visu-
ally determined) lines, respectively, and B=0.9429 for the
three conditions. The mean line is fairly similar to that by
Randolph and Wroth (1978). The coefficient of determination
and standard error of the mean line are 0.47 and 0.45,
respectively.
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Table 4. Statistics on measured strain softening and strain hardening t–z curves

SPT N qu: MPa

Total number
of measured
t–z curves

No. of measured
strain softening

t–z curves

No. of measured
strain hardening

t–z curves

Percentage
t–z curves with
strain softening

Percentage
t–z curves with
strain hardening

0 to 10 0 to 0.1 43 28 15 65.1 34.9
10 to 30 0.1 to 0.3 66 37 29 56.1 43.9
30 to 50 0.3 to 0.5 41 10 31 24.3 75.7
50 to 100 0.5 to 1.0 59 15 44 25.4 74.6
100 to 200 1.0 to 2.0 58 9 49 15.5 84.5
— 2.0 to 3.0 22 4 18 18.2 81.8
— 3.0 to 6.0 22 6 16 27.3 72.7
— 6.0 to 8.0 11 5 6 45.5 54.5
Total 322 114 208 35.4 64.6
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12. t–z and q–w functions
Bohn et al. (2017) summarised the various types of t–z func-
tions. All the available functions are elastic–perfectly plastic;
the elastic part can be linear, multi-linear or non-linear, com-
monly hyperbolic or root functions. There are two categories

of t–z functions: those whose function relates to soil strength
stiffness as by Frank (1984) and Randolph (2007) and those
that do not. Frank (2017) related soil and rock types, pressure-
meter parameters and pile types to multi-linear type t–z
curves.
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In order to be able to simulate strain hardening, strain
softening t–z curves and strain hardening and stiffening
q–w curves, different models that were developed for
structural materials were adopted and adapted for use. These
were the

(a) Tsai (1988) function, which was developed for
concrete and which can simulate non-linear
pre-yield followed by perfect plasticity or strain
softening

(b) Ramberg and Osgood (1943) function, which was
developed for strain hardening alloys;

These two t–z functions are illustrated in Figure 13.

The Tsai equation adopted for modelling strain softening t–z
behaviour pile is expressed as:

y ¼ nx
1þ n� ½r=ðr� 1Þ�f gxþ ½xr=ðr� 1Þ�

x ¼ δs
δsu

y ¼ fs
fsu

Table 5. Statistics on measured strain hardening and stiffening q–w curves

Description
Average SPT
N at pile toe

Average
qu: MPa

Total
number of
q–w curves

No. of
stiffening
q–w curves

No. of strain
hardening
q–w curves

Percentage
stiffening
curves

Percentage
strain hardening

curves

Soils 131 0.131 44 24 20 55 45
Limestone — 20 21 2 19 10 90
Granite — 40 10 4 6 40 60
Sandstone — 7 12 3 9 25 75
Shale — 5 2 2 0 100 0
Schist — 60 4 0 4 0 100
Total 93 35 58 37.6 62.4
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Figure 12. Back-calculated soil shear modulus plotted against qu
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n ¼ kisδsu
fsu

Higher r values are associated with steeper strain softening
curves. The function does not place a limit on the degree of
softening, but this can be imposed in the numerical scheme.

The Ramberg and Osgood model for strain hardening t–z
behaviour is expressed as:

δs ¼ fs
kis

1þ α
fs
fsu

� �R�1
" #

Higher R values are associated with steeper pre-yield curves.
Higher α values result in higher displacements at which fsu is
reached and the onset of perfect plastic conditions.

The Ramberg and Osgoodmodel for strain hardening and stiffen-
ing q–w behaviour is illustrated in Figure 14 and expressed as:

δb ¼ fb
kib

1þ β
fb
fbu

� �T�1
" #

where T>1 for strain hardening and

δb ¼ fb
kib2

1þ β
fb
fbu

� �T�1
" #

where 0<T<1 for stiffening.

13. Developing t–z models

13.1 Tsai model for strain softening
For materials up to SPT N of 200, it is recommended that fsu
be obtained from the median line of Figure 1. For harder
materials, αq is best obtained from the mean line of Figure 4.

G values should be obtained from the mean equation of
Figure 12. kis is computed from G using the Randolph and
Wroth (1978) equation.

The other parameters required for the Tsai model are δsu and
r. For these, statistical analyses of 29 t–z curves for SPT N less
than 10 and another 39 curves for SPT N between 10 and 30
were carried out. The results are presented in Tables 6 and 7
for δsu and r, respectively. The significant variations shown in
Figures 8(a) and 8(b) are reflected in the large standard devi-
ations (SDs). Such scatter is not unexpected considering the
different types of geological formations and the material differ-
ences. In the light of the significant scatter and for want of a
better approach, it is proposed that the median values be
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Figure 13. Adapted Tsai and Ramberg and Osgood models for t–z

Table 6. Statistics for δsu (Tsai’s t–z model)

SPT N No. of samples Mean Median SD

N<10 29 12.92 11.25 8.29
10≤N<30 39 13.36 11.00 9.38
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Table 7. Statistics for r (Tsai’s t–z model)

SPT N No. of samples Mean Median SD

N<10 29 6.46 4.00 6.38
10≤N<30 39 3.83 2.00 4.79
30≤N<50 12 4.08 1.40 7.15
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adopted. The final test of this choice is whether the t–z curves
can be used to estimate reasonably accurately the performance
of a pile.

13.2 Ramberg and Osgood model for strain hardening
The recommended method for obtaining fsu and αq is the same
as described in Section 13.1.

The other parameters required to define the model are α and
R. A total of 130 t–z curves for the range of SPT N from 30 to
200 were subdivided into three different SPT groups for statisti-
cal analysis. The results are presented in Tables 8 and 9 for α
and R, respectively.

Again there is significant variation in the t–z curves, which is
reflected in the high SDs. Again the median values that

Table 9. Statistics for R (Ramberg and Osgood’s t–z model)

SPT N No. of samples Mean Median SD

30≤N<50 34 8.83 5.00 9.45
50≤N<100 47 6.83 5.00 4.26
100≤N<200 49 5.67 5.00 3.67

Table 10. Proposed parameters for t–z models for grade III to VI and soils related to SPT N

SPT N

Approximate
weathering or
decomposition
grade

f su: kPa
(Figure 1

median line)

kis: kPa/mm (from mean G
equation of Figure 12)

Tsai model for
strain softening

Ramberg and Osgood
model for strain hardening

Diameter 0.75 m Diameter 2 m δsu: mm r α R

1 Soils and VI 6 1.2 0.6 10.0 4.0 — —

5 30 5.3 2.7 10.0 4.0 — —

10 60 13.9 5.3 10.0 4.0 — —

20 80 19.7 10.1 10.0 2.0 — —

30 114 23.9 11.5 10.0 2.0 — —

40 V 144 31.3 15.1 — — 3.0 5.0
50 171 35.5 16.8 — — 3.0 5.0
75 213 52.0 24.5 — — 3.0 5.0
100 IV/V 248 68.3 32.2 — — 3.0 5.0
150 338 100.0 47.3 — — 3.0 5.0
200 III/IV 400 131.2 62.0 — — 3.0 5.0

Table 11. Proposed parameters for t–z model for rock types and related strengths

Rock type

Approximate
weathering or
decomposition
grade qu: MPa

fsu: kPa
(Figure 4
mean)

kis: kPa/mm Ramberg and Osgood
model

Diameter
0.75 m

Diameter
2 m

Recommended
values for all pile sizes α R

Shale III/IV 4.3 600 77.3 36.6 50 3.0 5.0
Sandstone IV 1.9 400 132.4 62.7 56 3.0 5.0

III/IV 7.5 800 254.5 120.0 112
II/III 17.2 1200 373.0 176.6 168

Granite III/IV 1.9 400 132.4 62.7 90 3.0 5.0
II/III 14.4 1100 343.6 162.7 247
I/II 38.5 1800 546.7 258.8 404

Limestone III/IV 1.9 400 209.8 99.3 118 3.0 5.0
II/III 14.4 1100 544.6 257.8 324
I/II 38.5 1800 866.4 410.2 531

Schist III/IV 1.9 400 132.4 62.7 150 3.0 20.0
II/III 23.3 1400 431.3 204.2 375
I/II 68.5 2400 717.0 339.4 600

Table 8. Statistics for α (Ramberg and Osgood’s t–z model)

SPT N No. of samples Mean Median SD

30≤N<50 34 6.72 2.55 8.06
50≤N<100 47 7.16 2.95 11.60
100≤N<200 49 8.06 3.50 12.34
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happen to be similar for the different SPT N groups are pro-
posed for the model.

13.3 Proposed parameters and developed t–z curves
A summary of the proposed parameters for the Tsai and
Ramberg and Osgood t–z models is given in Table 10 for soils
and grade IV to V materials with related SPT N values and
Table 11 for different rock types and range of weathering
grades. The kis values are for 750 mm and 2000 mm diameter
piles.

The resulting developed t–z curves are plotted against the
measured t–z curves in Figures 8(a)–8(e) and 9(a)–9(e).

A comparison of the developed t–z curves for different SPT N
values up to 200 for pile diameters of 750 mm and 2000 mm
is shown in Figure 15(a). The difference in the t–z curves for
750 mm and 2000 mm piles becomes apparent for larger SPT
N values. Figure 15(b) shows t–z curves for the different rock
types also for 750 mm and 2000 mm diameter piles. The t–z
curves for piles of larger diameter are softer, but the percentage
differences for the two pile sizes are lower for the lower
strength rocks. It was found from analysis of the piles (see
Sections 16 and 17) that improved estimates of the load–settle-
ment curves can be made by using the recommended kis par-
ameters given in Table 11; these recommended kis values are
independent of pile sizes.
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14. Developing q–w models
The kib values obtained from the 51 measured strain hardening
q–w curves and kib2 from the 25 measured stiffening curves are
plotted against SPT N and qu in Figure 16. kib and kib2 can be
obtained from qu or SPT N by use of the mean equation given
in Figure 16. There is considerable scatter with the following
expressions for the mean:

kib ¼ 2329:6q0:3493u for strain hardening

kib2 ¼ 951:15q0:3292u for stiffening

The other parameters for defining a strain hardening q–w
curve are T and β. Statistical analyses from curve fitting the q–
w curves are summarised in Table 12 for kib and Table 13 for β
and T. As is apparent from Figure 16, the scatter is significant
and SDs are high. The coefficient of determination and stan-
dard error for the mean line are 0.26 and 0.40, respectively,
whereas for kib2 the coefficient of determination and standard
error are 0.13 and 0.52, respectively. Median values are pro-
posed for use.

Tables 14 and 15 are the results of statistical analysis of kib2, β
and T for stiffening curves. Again the scatter is large and
median values are proposed for use. The proposed parameters
for strain hardening and stiffening q–w curves are given in
Tables 16 and 17 for a range of rock types and weathering
grades. The q–w curves developed from the parameters in
Tables 16 and 17 are shown in Figures 17(a) and 17(b).
Stiffening curves do not follow rock strengths, as many other
factors such as pile toe cleanliness, joint conditions, their
orientations and spacing and deterioration of shales on
exposure influence the behaviour.

15. Method for estimating pile behaviour
The procedure for estimating the performance of a pile is as
follows.

Soil profile

(a) Divide the sub-surface into layers, each with a
representative SPT N or qu.

t–z curves

(a) For each layer obtain median Ks from Figure 1 or mean
αq from Figure 4.

(b) Obtain an estimate of shear modulus from the mean
equation in Figure 12.

(c) Estimate kis using Randolph and Wroth equation.
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Strain hardening kib = 2329.6qu 0·3493

Stiffening kib2 = 951.15qu 0·3292

n = 25, r2 = 0.13, σX
– = 0.52

n = 51, r2 = 0.26, σX
– = 0.40

Figure 16. Measured Kib and Kib2 plotted against qu

Table 12. Statistics for kib (Ramberg and Osgood’s strain harden-
ing q–w model)

No. of
samples

kib (from mean kib equation of
Figure 16)

Mean Median SD

Limestone 19 11 155 8886 8704
Granite 6 8757 8262 5280
Sandstone 9 3437 3039 9496
Schist 1 4174 4174 0

Table 13. Statistics for β and T (Ramberg and Osgood’s strain hardening q–w model)

No. of samples

β T

Mean Median SD Mean Median SD

Soils 12 3.90 1.46 6.94 4.30 4.00 1.73
Limestone 5 8.18 1.30 15.01 3.90 3.00 2.13
Granite 4 1.33 1.05 0.88 4.13 3.00 2.59
Sandstone 5 1.58 1.60 1.18 4.80 3.00 2.95
Schist 2 1.60 1.60 1.38 3.25 3.30 1.06
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(d ) For SPT N less than 30, adopt the strain softening model
and develop the t–z curve using the Tsai model with
parameters from Table 10. Introduce a limit to the strain
softening.

(e) For SPT N greater than 30, adopt the strain hardening
model and develop the t–z curve using the Ramberg and
Osgood model with the recommended parameters in
Tables 10 and 11.

Table 15. Statistics for β and T (Ramberg and Osgood’s stiffening q–w model)

No. of samples

β T

Mean Median SD Mean Median SD

Soils 13 0.64 0.66 0.43 0.31 0.30 0.14
Limestone 1 31.50 31.50 — 0.50 0.50 —

Granite 4 0.96 0.78 0.62 0.38 0.40 0.05
Sandstone 3 0.80 0.80 0.28 0.23 0.30 0.12

Table 16. Proposed parameters for strain hardening q–w Ramberg and Osgood’s model

Description
Approximate weathering
or decomposition grade

SPT N at
pile toe qu: MPa fbu: kPa

Strain hardening parameters

kib β T

Soils VI 32 0.32 2319 2329.6 N0.3493 1.46 4.0
All rock types IV/V 131 1.31 4692

III/IV 214 2.14 5998
Limestone III/ IV — 1.90 5651 11 155 1.30 3.0

II/III — 14.40 15 558
I/II — 38.50 25 440

Granite III/IV — 1.90 5651 8757 1.05 3.0
II/III — 14.40 15 558
I/II — 38.50 25 440

Sandstone IV — 1.90 5651 3437 1.60 3.0
III/IV — 7.50 11 228
IV — 17.20 17 004

Schist III/IV — 1.90 5651 15 000 1.60 3.3
II/III — 23.30 19 791
I/II — 70.70 34 474

Table 17. Proposed parameters for stiffening q–w Ramberg and Osgood’s model

Description
Approximate weathering
or decomposition grade SPT N at pile toe qu: MPa fbmax: kPa

Stiffening parameters

kib2 β T

Soils VI 13 0.13 1478 951.15SPT N0.3292 0.66 0.3
All rock types VI/V 112 1.12 4339

III/IV 250 2.50 6483
Limestone III/IV — 1.90 5651 8285 31.50 0.5

II/III — 14.40 15 558
I/II — 38.50 25 440

Granite III/IV — 1.90 5651 3274 0.78 0.4
II/III — 14.40 15 558
I/II — 38.50 25 440

Sandstone IV — 1.90 5651 2807 0.80 0.3
III/IV — 7.50 11 228
IV — 17.20 17 004

Shale III/IV — 5.00 9168 845 — —

Table 14. Statistics for kib2 (Ramberg and Osgood’s stiffening
model)

No. of
samples

kib2 (from mean kib2 equation of Figure 16)

Mean Median SD

Limestone 1 8285 8285 0
Granite 4 3586 2415 3947
Sandstone 2 2807 2807 522
Schist 2 509 509 104
Shale 2 845 845 47
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q–w curves

(a) Decide on the likelihood of strain hardening or stiffening.
This depends on the confidence in cleaning the pile toe,
rock type and whether rock is highly fractured with open
joints.

(b) Determine fbu from Figure 7 using A=4.1.
(c) Obtain an estimate of kib (strain hardening), kib2

(stiffening) from the mean equation in Figure 16.
(d ) Develop the Ramberg and Osgood q–w model using the

parameters given in Table 16 for strain hardening and
Table 17 for stiffening.

Input the developed t–z and q–w curves for the different layers
into a program for t–z analysis of piles.

16. Estimating pile behaviour and
comparing with some of the
instrumented test piles’ results

The models with the parameters derived above are used to esti-
mate the pile top load–settlement response of 35 of the 100
instrumented piles of the database to test the degree of model

reliability. One problem in the analysis is the need to decide a
priori between strain hardening and stiffening pile toe behav-
iour. In the calculations for the 35 piles, the q–w model from
the known pile toe behaviour, as shown in the instrumented
test pile results, was adopted. The results of the analysis are
shown in Figures 18(a) and 18(b). For most cases, the com-
parison between calculated and measured, including highly
non-linear load–settlement behaviour, is encouraging, with
most of the estimated settlements at working load and at twice
working load within 3 mm and 5 mm of the actual,
respectively.
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The two piles that showed significant differences between the
estimated and actual settlement are piles ID1 and ID5. Pile
ID1 is located at the junction of limestone and Kenny Hill
(sedimentary) formation. The sub-surface conditions at inter-
faces between the two different geological formations are
complex. The back-calculated Ks values are 2, corresponding
to the lower bound conditions compared to the median value
of 4. Pile ID5 is a bi-directional load test. For the pile length
above the load cell, the difference between measured and
actual movement is 1 mm. However, for the length below the
load cell, the difference is 54 mm. It is thought that this may
be due to poor concrete in contact with the lower plate of the
bi-directional load cell.

The detailed results of the analyses for six of the 35 piles are
described in Table 18 and are shown in Figures 19–24. For all
six cases, strain hardening as well as stiffening q–w models
were used. The estimated load–settlement curves were found to
compare well with the measured ones up to 2.5 to 3 times the
working load when the behaviour was significantly non-linear
provided the correct type of q–w curve was adopted. If in the
event the q–w type is not that measured, it was found that a
reasonably good match with measured was achieved up to
about 1.5 to 2 times working load before significant mobilis-
ation of base resistance resulted in larger differences. The pro-
posed t–z curve for the different strengths and geological
formations are always between the lower and upper bound
lines (see Figures 8 and 9). Therefore, it may be expected
that often there will be differences between the t–z models and
the actual t–z curves resulting in variations from the actual
load-transfer curves. A difference in axial load at depth of up
to 54% was estimated for case A (Figure 19). However, for
case B (Figure 20) to case F (Figure 24), the maximum differ-
ence in the axial load at depth was found to be less than 19%.

17. Estimating pile behaviour and
comparing with pile tests
outside the database

The results of 27 test piles with comprehensive sub-surface
information, SPT N or qu profiles, were obtained from the
available literature and used for testing the proposed models.
The 27 piles were from across the globe and include a few piles
outside the tropics. A description of the piles is given in
Appendix 2. Figures 25(a) and 25(b) illustrate the comparisons
of the settlement at maximum test load and at half the
maximum test load. At half the maximum test load, most of
the estimates of settlement differ from the actual by less than
3 mm, whereas at maximum test load, most of the estimated
settlements differ from the actual by not more than 5 mm.
Figures 26(a) and 26(b) compare the estimated and actual load
settlement curves for seven cases.

There was greater difference between the estimated and actual
pile behaviour for three out of 27 piles; one in chalk (UK),
one in shale (Taiwan) and one in alluvial sand (Japan). For theTa
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Case A (ID21)
750 mm diameter bored pile,
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Figure 19. Application of proposed t–z and q–w – case A
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Case B (ID29)
1500 mm diameter bored pile,
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Figure 20. Application of proposed t–z and q–w – case B
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three piles the difference in settlements between estimated and
actual at half the maximum test load and at maximum test
load were 10 mm and 20 mm, respectively. The inability to
make a better estimate for these three piles is largely because
the correlations between fsu, fbu and G with strength are differ-
ent from the tropical soils in this paper.

18. Summary and conclusions

(a) Data from 100 instrumented test piles that extend over
the complete weathering profiles of different geological
formations were analysed to provide ultimate shaft and
base parameters.
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Figure 21. Application of proposed t–z and q–w – case C
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Case D (ID26)
900 mm diameter bored pile,

WL = 5550 kN
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(b) Ks values from the test data show that shaft resistance
parameters reduce from more than 5.0 at low SPT N
values to 2.0 at SPT N greater than 100. Commonly
adopted present-day design parameters are conservative.

(c) The ultimate shaft resistance factors αc and αq from the
authors’ data when put together with Kulhawy and
Phoon’s data for rock cover the full range of rock
strength (and therefore the entire weathering profiles)
with qu from 0.02 to 80 MPa. Broadly the same

correlation of ultimate shaft resistance with strength
holds for the full strength range from 0.02 MPa to
80 MPa, albeit with scatter.

(d ) Strain softening shaft resistance is prevalent for SPT
N below 30. Strain hardening is prevalent for SPT
N>30.

(e) The ultimate base resistance values plotted against qbu
are similar to that by Zhang and Einstein (1998) except
for the lower bound line.
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( f ) The Tsai (1988) and Ramberg and Osgood (1943) models
were used to develop t–z curves. The former is used for
strain softening shaft resistance behaviour, the latter for
strain hardening behaviour that is prevalent for SPTN>30.

(g) Two types of q–w curves were observed, namely, strain
hardening and stiffening, wherein the stiffness increases
with pile toe movement. The Ramberg and Osgood
(1943) model is used for both strain hardening and
stiffening pile toe behaviour.

(h) Parameters for the models for different soil and rock
strengths and rock types were derived from the test data
and are presented in this paper.

(i) The model was tested against 35 of the 100 test piles,
cases for which the piles were loaded into the non-linear
range with encouraging results.

( j) Testing of the model was extended to 27 test pile
data from all over the world; the results were
encouraging, especially for piles within the tropics. The
model did not fare as well for piles in chalk, alluvial sand
and shales outside the tropics.
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Appendix 1
See Table 19 for summary of the test piles.

Appendix 2
See Table 20 for description of 27 test piles.
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Table 19. Instrumented test piles (database)

ID Description
Diameter:

m L: m

Socket
length

in grades
I, II and III: m

Pile toe
material Formation

WL:
MN

Test
load:
MN

Settlement
at maximum
test load: mm

1 P. Ramlee PTP1, KL. Ω^ 0.9 31.5 0 N 53 ClSi LSF 5.55 7.20 86.51#
2 P. Ramlee PTP2, KL. Ω^ 0.9 39.4 3.7 GI/II L LSF 5.55 15.26 28.39#
3 P. Ramlee PTP3, KL. Ω^ 0.9 43.0 0 N 173 ClSi LSF 5.55 8.11 54.01#
4 Kerinchi PTP1, KL. Ω* 0.9 33.1 0 N 125 SaSi KHF 6.30 18.53 27.39
5 Mas B. PTP1, KL. ψ* 2.5 56.0 0 N 188 Si KHF 21.89 30.65 105.00
6 Mas B. PTP2, KL. ψ* 1.35 33.85 8.4 GI/II Sc Schist 8.00 20.00 6.00
7 Tropicana PTP2, Sel. Ω* 0.9 45.7 3.9 GI/II G GF 6.53 16.31 41.70
8 Tropicana PTP1, Sel. ψ* 1.8 24.0 4.5 qu = 20 MPa G GF 11.10 22.20 3.50
9 Kelana J. S. 2, KL. ψ* 1.0 21.8 3.3 qu = 9.55 MPa G GF 3.79 11.36 21.00
10 9 Seputeh, KL. Ω* 1.0 20.9 2.1 GIII SAs Sandstone 6.78 20.34 39.00
11 Sky Suite, KL. Ω^ 1.5 40.9 4.2 GI/II L LSF 18.75 37.64 39.12
12 Jalan S. Ismail, KL. ψ* 1.2 20.0 0 N 167 SaCl KHF 5.04 10.08 26.80
13 Lot D, K. Sentral, KL. Ω* 0.9 25.8 7.3 GI Sh Shale 5.50 16.39 40.52
14 Elite Pavilion, KL. Ω* 0.9 63.1 1.1 GII/II L LSF 5.56 13.00 76.16
15 KL Eco City, KL. Ω* 0.9 16.0 0 N 200 SaSi KHF 5.55 14.04 21.47
16 JKG Jalan R. Laut, KL. Ω* 1.0 18.5 2.5 GI/II L LSF 6.00 19.32 30.80
17 Tradewinds, KL. Ω* 0.9 24.8 1.8 GI L LSF 5.55 16.90 38.88
18 Hampshire, KL. Ω* 1.0 57.1 13.4 GIII L LSF 6.40 17.57 24.24#
19 Lot 4 City One, KL. Ω* 1.2 10.1 2.7 GI L LSF 8.67 17.02 4.94
20 Presint 2, Putrajaya. Ω* 0.9 22.5 2.5 GIII SAs Shale 5.55 14.51 21.65
21 KL Pavilion, KL. Ω* 0.75 50.6 0 N 34 SaSi LSF 3.30 9.90 42.52
22 KLCC Convention,

Center, KL. Ω*
1.0 27.2 0 N 167 ClSi Shale 5.50 10.34 47.80

23 KLHC, KL. Ω* 0.8 26.7 2.4 GI/II L LSF 4.17 5.89 57.00
24 Seputeh, KL. Ω* 1.2 26.4 3.0 GI Sc Schist 9.89 30.28 33.53
25 Bangsar Village, KL. Ω* 0.9 26.6 0 N 136 SaSi KHF 4.70 14.00 26.10
26 Emporis, Sel. Ω* 0.9 29.8 0.3 GIII G GF 5.55 14.23 68.03
27 Ekotitiwangsa P97, KL. ψ* 1.8 27.7 9.0 GII/III L LSF 10.00 20.00 11.50
28 Ekotitiwangsa P122, KL. ψ* 1.35 27.3 7.8 qu = 9.55 MPa L LSF 5.80 11.60 9.10
29 Stonor 3, KL. Ω* 1.5 38.0 5.0 GIII L LSF 15.46 30.56 19.49
30 Duke 2, KL. Ω* 0.9 12.4 4.9 GII/III L LSF 5.55 14.20 20.00
31 Platinum Park P4, KL. Ω^ 1.5 19.5 0 N 158 ClSi LSF 10.00 23.42 115.41
32 Kapar, Sel. Ω^ 1.1 40.2 0 N 88 SaSi 4.50 6.45 7.10
33 Bukit Damansara, KL. Ω^ 0.9 25.1 0 N>100 SaSi GF 5.30 13.11 20.57
34 Platinum Park, KL. Ω^ 1.8 31.0 4.0 GI/II L LSF 22.50 45.63 20.39
35 Istana, KL. Ω^ 1.2 18.0 0 Soft toe 11.31 8.88 61.49
36 Bangsar South, KL. Ω^ 1.0 22.7 8.1 GII/III SIs KHF 5.50 16.63 19.54
37 Platinum Park P3, KL. Ω^ 1.8 37.0 2.7 GI/II L LSF 22.00 44.04 24.63
38 Site E P2, Johore. Ω* 1.5 45.5 0 N 429 Sa OA 15.00 30.11 57.69
39 Jalan Ampang, KL. Ω^ 1.2 37.5 65 GIII L LSF 9.80 19.44 16.92
40 Site C P2, Johore. Ω* 0.9 60.5 0 N 55 Sa OA 6.30 14.01 42.89
41 Kelantan. Ω^ 1.5 58.0 0 N 37 Sa 6.80 7.74 80.44
42# Desa P. City, KL. Ω^ 1.05 17.8 0 GIII G GF 7.50 16.80 100.91
43 Chi Tze Kepong, KL. Ω^ 0.9 16.5 1.5 GII/III L 5.00 14.94 16.17
44 Kemaman, Terengganu. Ω^ 1.0 52.0 0 N 200 SaSi 6.27 10.85 13.74
45# Bangi, Sel. Ω^ 0.6 15.0 0 N 200 SaSi 3.60 7.58 43.82
46 Uptown 1, Sel. Ω^ 0.9 38.3 3.2 GIII G GF 6.30 16.52 70.35
47 Site E P1, Johore. Ω* 1.5 50.6 0 N 100 Sa OA 17.67 30.24 22.86
48 Taman Tun, KL. Ω^ 0.75 27.3 2.3 GIII G GF 3.00 6.10 38.78
49 Gua Musang 1, Kelantan. Ω^ 0.9 21.3 3.5 GI/II L LSF 6.30 14.61 12.21
50 Gua Musang 2, Kelantan. Ω^ 1.0 12.2 3.9 Soft toe LSF 7.80 12.00 4.94
51 SPK Shah Alam, Sel. Ω^ 1.5 21.6 0 N 100 SaSi 8.50 16.94 8.95
52 Kinrara, KL. Ω^ 0.6 11.0 7.0 GIII Sh KHF 3.50 6.60 20.29
53 Jade Hill 1, Sel. Ω^ 0.6 22.0 0 N 200 ClSi 2.35 6.90 20.20
54 Ipoh, Perak. Ω^ 1.0 9.7 2.3 GI/II L LSF 4.00 12.01 5.91
55# Jalan Robertson, KL. Ω^ 1.0 27.3 0 N 125 ClSi 6.87 15.54 101.34
56 Cyberjaya P3, Sel. Ω^ 1.2 13.5 4.0 GII/III SAs KHF 9.00 26.97 14.25

(continued on next page)
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Table 19. Continued

ID Description
Diameter:

m L: m

Socket
length

in grades
I, II and III: m

Pile toe
material Formation

WL:
MN

Test
load:
MN

Settlement
at maximum
test load: mm

57 ECER, Kelantan. Ω^ 1.0 9.0 3.4 GI/II L LSF 5.50 16.51 9.08
58 Fuyuu Venture, Melaka. Ω^ 11.0 52.9 0 N 150 SiSa 9.10 20.00 119.08
59# PJ City, Sel. Ω^ 0.9 53.9 0 N 115 SaSi 5.50 16.02 42.63
60 Nusajaya, Johore. Ω^ 0.6 26.8 1.6 GIII/IV SAs Sandstone 2.80 8.47 18.08
61 Site D P1, Johore. Ω* 1.2 41.5 0 N 88 Sa OA 11.30 16.57 52.02
62 Hap Seng Kinrara, Sel. Ω^ 1.0 30.7 0 Soft toe 7.80 21.21 63.13
63 Dengkil XMU 1, Sel. Ω^ 0.9 30.1 7.6 GII/III SAs Sandstone 5.50 14.54 34.26
64 Danga Bay, Johore. Ω^ 1.0 37.5 0 N 100 SaSi 6.80 20.23 33.52
65 MRT Kajang, Sel. Ω^ 1.2 37.0 3.8 GIII Sc Schist 9.80 29.64 23.90
66 MRT Cheras, Sel. Ω^ 0.9 44.0 0 N 100 SaSi Schist 5.50 16.26 21.01
67 KLIA2, Sel. Ω^ 0.75 47.3 7.1 GIII SAs Sandstone 3.90 9.79 38.35
68 Opus 1, KL. Ω^ 1.2 46.5 0 N 100 SaSi 9.00 26.89 40.39
69 K4 Mont Kiara, KL. Ω* 1.0 23.5 0 N 200 Sa GF 5.80 11.66 19.96
70 Alor Star, Kedah. Ω^ 1.05 36.2 0 7.80 5.26 44.62
71 Site C P4, Johore. Ω* 1.2 34.1 0 N 120 Sa OA 11.31 19.54 69.49
72 Foresta, Penang. Ω^ 1.05 10.2 4.0 GIII G GF 5.55 11.31 4.20
73# Gerbang Perdana TP4,

Johore. Ω*
1.0 34.0 0 N 120 Al 5.89 15.00 64.00

74 Kapar PB2, Sel. Ω^ 1.1 40.0 9.0 GIII SAs Sandstone 4.50 8.93 9.62
75 Site C P3, Johore. Ω* 1.0 34.3 0 N 120 Sa OA 7.86 14.60 18.29
76 Uptown 3, Sel. Ω^ 1.2 18.7 2.0 GII/III G GF 11.30 21.30 84.88
77 Site B P1, Johore. Ω* 1.2 51.3 0 OA 11.30 16.91 7.53
78 Jade Hill 2, Sel. Ω^ 0.75 27.0 0 Soft toe 3.70 10.27 17.19
79 Dengkil XMU 2, Sel. Ω^ 0.75 16.8 6.5 GIII SAs Sandstone 3.80 6.34 55.46
80 Opus 2, KL. Ω^ 1.2 46.8 0 N 100 SaSi 9.00 26.10 84.69
81 Persiaran Stonor, KL. ψ* 1.0 39.0 6.0 GI/II L LSF 5.00 12.00 25.00
82 Site A P1, Johore. Ω* 0.75 47.0 0 N 21 SaSi OA 4.40 6.24 73.04
83 Site A P2, Johore. Ω* 1.0 50.5 0 N 34 SaSi OA 5.22 11.06 104.03
84 Site A P3, Johore. Ω* 1.0 40.0 0 OA 7.86 12.50 11.26
85 Site A P4, Johore. Ω* 0.75 55.7 0 N 27 SaSi OA 4.40 8.17 26.16
86 Site A P5, Johore. Ω* 0.75 40.1 0 N 79 Sa OA 4.40 8.15 20.07
87 Site C P1, Johore. Ω* 1.0 48.2 0 N 40 Sa OA 7.86 14.97 24.61
88 Kg. Berembang Ampang,

Sel. Ω^
0.9 34.4 9.4 GI/II L LSF 5.50 16.76 14.00

89 Uptown 4, Sel. Ω^ 1.2 22.8 6.0 GI/II G GF 11.30 29.65 40.13
90 Jln Semangat P.J.,

Sel. Ω^
0.9 22.9 7.9 GII/III G GF 6.30 18.63 35.81

91 118, KL. Ω^ 1.2 53.8 0 N 100 Si KHF 12.00 28.69 49.47
92 KL 100 Tower, KL. Ω^ 1.5 57.0 0 N 200 SiSa 16.50 31.05 155.43
93 RMM Bukit Jalil, KL. Ω* 1.0 12.8 0 N 214 SaSi 6.10 13.45 59.30
94 Exact location not known. ψ* 1.5 14.9 4.6 GI/II L LSF 7.50 22.50 12.00
95 Exact location not known. ψ* 1.5 22.8 7.8 GIII SAs Sandstone 6.63 13.25 1.60
96 Exact location not known. ψ* 1.2 31.9 5.4 GII/III SAs Sandstone 5.65 16.95 44.00
97 Exact location not known. ψ* 1.5 28.2 6.5 GIII SAs Sandstone 8.75 17.50 3.30
98 Jalan S. Ismail P13, KL. ψ* 2.8 68.8 0 N 375 SaSi KHF 27.46 54.91 32.00
99 Jalan S. Ismail P34, KL. ψ* 1.2 44.9 0 N 176 SaSi KHF 5.04 10.08 31.00
100 Eaton Residence, KL. ψ* 1.5 19.5 4.6 GII/III L LSF 8.75 17.50 9.20

L, length; WL, working load; KL, Kuala Lumpur; Sel, Selangor; Ω, maintained load test; ψ, bi-directional load test; LSF, limestone formation; GF, granite formation; OA,
old alluvium; KHF, Kenny Hill sedimentary formation; #, pile plunged in load test; #, settlement measured at cut off level; *, conventional strain gauge; ^, Glostrext
system; N, SPT N blow count; Cl, clay; Si, silt; Sa, sand; Al, alluvium with rock fragments; L, limestone; G, granite; Sc, schist; Sh, shale; SAs, sandstone; Sis, siltstone; qu,
unconfined compressive strength; GI, grade I rock; GII, grade II rock; GIII, grade III rock; MN, megaNewton
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Table 20. Piles (outside database) for model testing

ID
Project
site Authors Diameter: mm

Max. test
load,

Pmax: kN

Pile
length:

m

Socket
length:

m Type of rock at base

Measured Estimated

Settlement at
0.5� Pmax: mm

Settlement at
Pmax: mm

Settlement at
0.5� Pmax: mm

Settlement at
Pmax: mm

101 Brazil Albuquerque
et al. (2009)

400 601 12 0 SPT N 10 clayey sandy
silt.

1.49 3.32 2.81 4.24 (T)

102 Brazil Prediction Event
at Araquari
(Brazil)

1000 8544 24.1 0 SPT N 18 clayey sand 7.73 17.98 8.19 16.34 (H)

103 Cambodia Peou (2011) 1000 8513 31 0 SPT N 62 hard clay 3.88 18.34 4.33 11.36 (S)
104 Hong Kong Terence (2000) 1320 26 000 25.5 1.9 GIII Grandorite 15.48 28.02 13.09 22.39 (H)
105 India Gupta (2012) 1000 10 218 25 0 SPT N 30 sand 5.51 10.31 6.62 12.96 (H)
106 Indonesia Widojoko (2012) 800 8000 39 0 SPT N>50 clayey silt 4.87 21.78 7 18.00 (H)
107 Indonesia Wijanto et al.

(2017)
1200 24 381 85.5 0 Volcanic alluvial fans 7.99 23.33 8.53 22.65 (H)

108 Saudi Arabia Ahmed (2011) 800 4715 16 0 SPT N 81 silty clay 2.28 6.67 2.75 6.65 (H)
109 Singapore Leung (1996) 1400 20 040 16 5.5 GIII/IV siltstone 5.18 15.92 4.42 14.01 (H)
110 Singapore Chin (1996) 800 9240 24 0 SPT N>100 silty sand 4.90 12.55 5.83 15.45 (H)
111 Thailand Thasnanipan

et al. (1998)
1000 14 988 46.51 0 SPT N 40 dense sand 7.84 12.96 13.67 21.37 (H)

112 UAE Russo et al.
(2013)

1500 60 071 55.15 46.45 GIII/IV calcareous
sandstone

5.04 19.27 8.87 23.20 (H)

113 UAE Poulos and Davis
(2005)

900 29 885 40 5 Calcisiltite 12.98 32.51 15.98 40.61 (H)

114 Australia Pells and Turner
(1979)

450 2627 7.2 6.7 GII/III fresh to completely
weathered shale

4.76 22.57 4.29 21.02 (T)

115 China Raithel et al.
(2009)

1000 16 357 48 0 SPT N 60 silty clay 12.40 22.75 12.58 19.54 (H)

116 France Reiffsteck (2009) 500 1310 12 0 SPT N 26 clay 1.50 2.15 2.42 3.35 (H)
117 Greece Pitilakis et al.

(1988)
1000 5061 40 0 SPT N 80 sandy gravel 2.47 8.65 4.42 10.67 (H)

118 Japan Hirayama (1990) 2000 40 729 40 0 SPT N 30 sand 28.60 52.73 15.71 33.82 (H)
119 Korea Kim et al. (1999) 1500 22 332 32.7 8 GIII granite-gneiss 3.90 9.84 4.78 10.43 (H)
120 Korea Kim et al. (1999) 760 4879 5 5.4 GIII shale 2.29 19.96 4.19 15.57 (H)
121 Taiwan Lin et al. (2017) 1500 34 189 45.7 7.1 GIII/IV sandstone/shale 12.95 48.70 14.22 52.70 (T)
122 Taiwan Moh et al. (1993) 1500 20 412 16.6 3.8 GIII shale 27.97 49.94 15.12 31.38 (H)
123 United Kingdom Martin and

Budden (2016)
750 9563 37 0 London Clay 6.05 99.98 9.02 29.89 (S)

124 United Kingdom Raison (2017) 600 5201 20.6 6.1 Soft chalk 10.89 61.46 15.46 — (H)
125 United Kingdom Cole (1977) 1060 6726 8.5 1.9 GIII mudstone/sandstone 9.20 22.86 5.64 19.80 (H)
126 United Kingdom Mallard and

Ballantyne
(1977)

1145 10 820 8.6 8.6 Sound chalk 15.05 51.90 7.91 37.87 (ST)

127 United States O’Neill et al.
(1996)

1070 6623 6 5 Glacial till (IGM) 4.12 9.22 3.59 7.50 (T)

Remarks – H, hardening q–w; S, stiffening q–w; ST, soft toe; T, tension pile221
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