
MIDAS NFX CFD

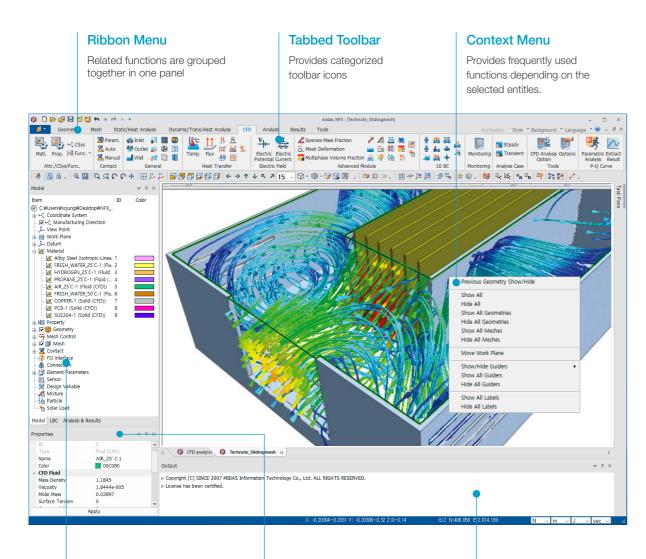
TOTAL SOLUTIONS FOR TRUE ANALYSIS-DRIVEN DESIGN

MIDAS

TOTAL ANALYSIS SOLUTIONS FOR OPTIMUM DESIGN IN MULTI-DISCIPLINES

midas NFX provides a finite element based CFD analysis function, which allows all fluid analyses in the flow velocity domain, various heat transfer analyses and multi-phase analysis.

A single work environment combines both structural and fluid analyses in the same geometric analysis model.



Tailored Work Environment for Design Practitioners

PRE-PROCESS

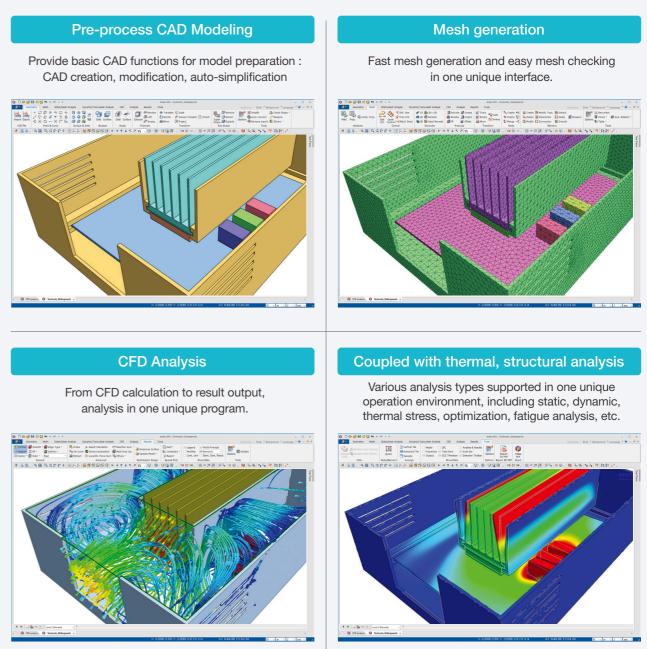
Effective and practical Work Environment

Overview : Graphic User interface

Work Tree

Presents model data in an intuitive way. Data can be directly managed from the tree menu.

Properties Window

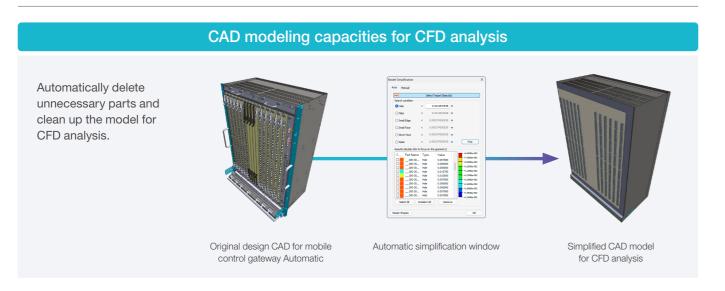

Review and edit values of the selected item

Message Window

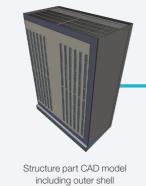
Provides useful feedback information during work.

PRE-PROCESS

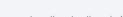
Integrated work environment for high efficiency


1 - GUI SYSTEM

Intuitive Modeling Automation Feature

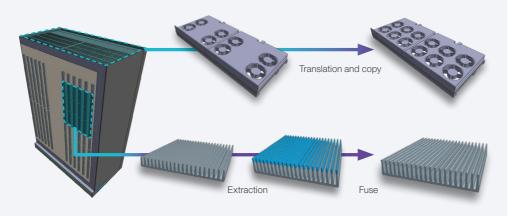

GRAPHIC USER INTERFACE (GUI)

CAD modeling capacities for CFD analysis



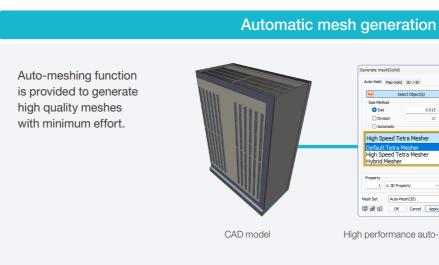
Automatic fluid volume extraction

Necessary fluid volume for CFD analysis can be automatically extracted from design CAD model.

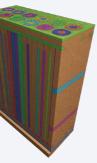


CFD area automatic extraction window

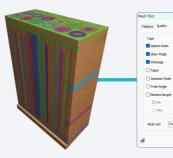
Fluid area inside outer shell


Basic CAD modeling for CFD analysis

Design can be modified directly using integrated CAD operations.


GRAPHIC USER INTERFACE (GUI)

Automatic Mesh Generation


Speed-up mesh generation by parallel processing

When meshing complicated geometries, multi-cores can be used to save mesh generation time.

92 parts 1,435,716 nodes 8,264,493 elements

Automatical quality check of generated meshes.

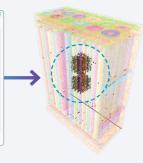
Generated meshes Mesh quality auto-check types

8 📕 🗸

Send

Apply Close

0.0001 m


Auto-Solid Map-Solid 2D->30 1 Size Metho Size 0.015 High Speed Tetra Meshe Default Tetra Mesher High Speed Tetra Mesher Hybrid Mesher Property 1 1: 3D Property lesh Set Auto-Mesh(3 🗔 🔗 😫 OK Cancel Apply High performance auto-meshing Meshed model

Multi-thread meshing progress of multi-core CPU can be checked

1 core 2 core 4 core

Automatic mesh quality check function

Visualization of low quality meshes

: 2/603, AVg.: 5.42, Min/ : 24442, Avg.: 61, Min/Mao Avg.: 0. Min/Max: 0 / 0 t: 10806, Avg.: 5.42, Min/Max: 1.03 / 440 : 24442, Avg.: 61, Min/Max: 4.84 / 89.9 , Avg.: 0, Min/Max: 0 / 0

Check information of low quality meshes in message window

Database and Repetition Automation Features for Minimizing Manual Work

GRAPHIC USER INTERFACE (GUI)

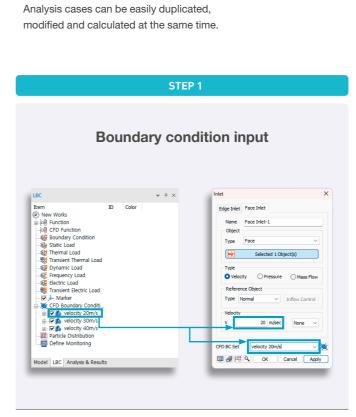
Material properties database

Automatic input for necessary material properties such as density, viscosity, conductivity and specific heat.

Color 4 ALIMPELIA BOXGE COPPER COPPER COPPER BOOM BOO FIRE WATES JC FREE WATES JC Mess Density Specific Heat Ploetability Heat Source Conductivity 1000 None kg/(mrse 0 W/m² kg/mol N/m sec2/m 0 None 1000 None 0 None 0 None 1000 None Symmetry Unit: W/(m·[T]) n/sec² n/sec² n/sec² Heat Transfer Specific Heat Conductivity Floatability Heat Source Species Advect Diffusivity Source]/(kg·[T]) W/(m·[T]) None None o W/mª m²/sec 1/sec None None Isotrop Radiation Absorption Co 0 1/m 0 1/m None Edit. Cancel Apply Fluid materials Structure materials

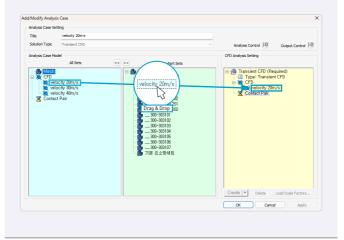
Case2 | With guide vanes

Copy the same boundary condition to different

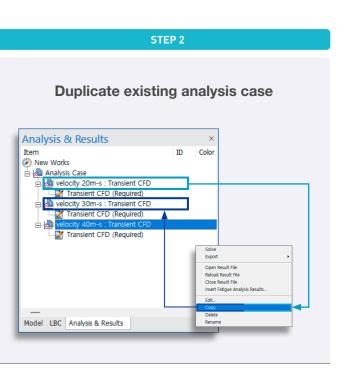

geometrical models in 2 analysis cases

PRE-PROCESS

Automatic copy function for analysis conditions


Drag & Drop Repetitive condition input can be done automatically Analysis condition can be copied according to geometry colors Conset 10 metro Conseter Second Secon • Blue surface | Speed condition Red surface | Pressure condition National Contractor

Case1 | Without guide vanes


conditions for new analysis case

Analysis case management: duplicate and reservation

STEP 4

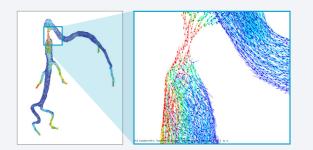
Reservation for analysis case calculation

4		Name	Туре	Description
	\checkmark	velocity 20m-s	Transient CFD	
	\checkmark	velocity 30m-s	Transient CFD	
		velocity 40m-s	Transient CFD	
	Selec		to reserve for calculati	on
	Selec			OK Cance

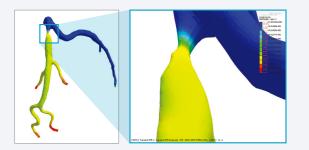
Providing analysis Scalability through Various Turbulence Models and Customizable Functions

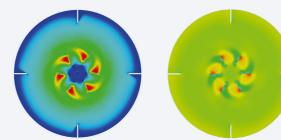
SOLVER

Accurate velocity analysis through 14 types of turbulent models

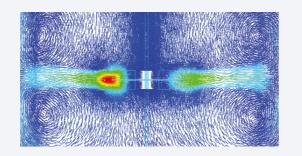

Variety of turbulent models are provided such as k- ϵ , k- ω SST, LES and DNS. Combining results from different models is possible.

Analysis of intravascular blood flow through k-ε composite model


Analysis of agitator's rotation through k-ωSST model

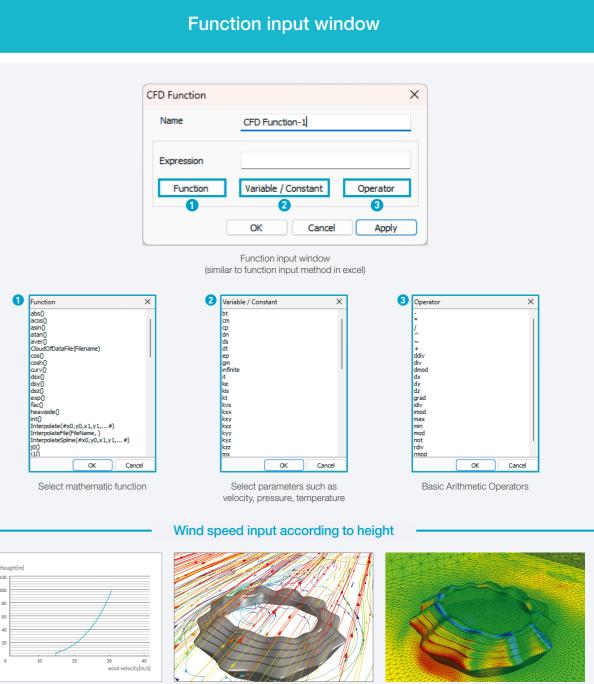


Evaluation of flow lines at stenostomia place of the vessel



Evaluation of hydraulic pressure at stenostomia place of the vessel

Velocity distribution at cross section



Side velocity vectors

SOLVER

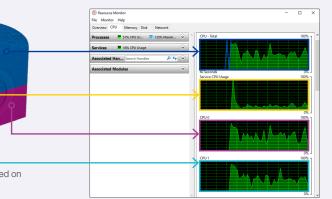
Easy application of variety of boundary conditions through CFD functions

You can input a numerical expression instead of final value into the input box, the value can be calculated automatically by the input box.

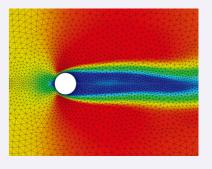
Wind speed data according to height

	×	
n-1		
onstant	Operator	
	3	
Cancel	Apply	
Cancel		

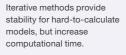
Visualization of flow lines

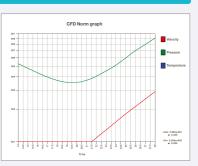

Pressure distribution

Optimal CFD with Parallel Computing and Stabilization Algorithms Applied


SOLVER					
Best CFD Solver					
				1 High speed calculation by	y using multiple CPUs i
	nulti-thread Solver is optimized with r results for complex design model ev		ırate	10 million	
	CFD Analysis Setting	×			→
0	Number of Processors	Enable Fast-Assemble			
	Element Formulation	_ Enable Fast-Assemble		Heat flow analysis model of semiconductor part	Analysis area division bas number of CPUs
2	 Hybrid (Accuracy) Reduced (Efficiency) 				
	 Standard (Stability) Equation Solver 			 Automatic setting of mesh 	hing algorithm
3	O Iterative	O Multifrontal		1. Hybrid opt	tion
	Stabilization Level Max. Retries in Equation Solver			Accuracy based algorithm is used when result accuracy is more important than computation speed.	
	Convergence Accelerator	Pressure			
	High-order Incomplete LU Multi Level Relaxation	Factorization			
	Intermediate Level Factor Top/Bottom Level Factor	0.3			
	CFD Material			3 Automatic solver setting f	for beginner level users
	Compressibility Incompress	ible 🗸		1. Iterative op	tion
	Compressibility Ideal gas(vi	iscous) 🗸		Calculation is fast in the	CFD Norm graph
	Set Default	OK Cancel		modeling is not appropriate, the calculation diverges.	

in parallel




2. Standard option

Stability algorithm is used when computing speed is more important than result accuracy.

2. Multifrontal option

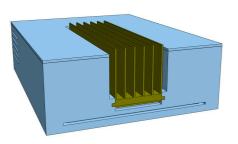
Specialized Thermal-Fluid Functionality Reflecting Diverse Practical Demands

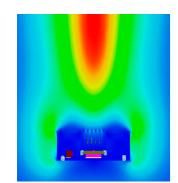
SOLVER

Conjugate heat transfer

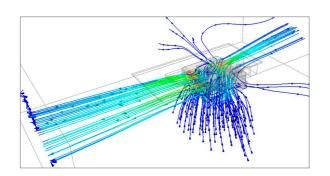
Fluid and solid heat transfer, as well as fluid-solid inter-fluid heat transfer analysis, enables water cooling, air cooling, and heating analysis of heating elements.

SOLVER

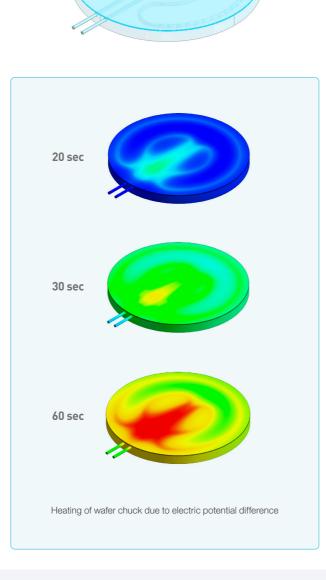

Joule heating


Estimate temperature changes by calculating the amount of heat generated by the electric potential difference inside the conductor.

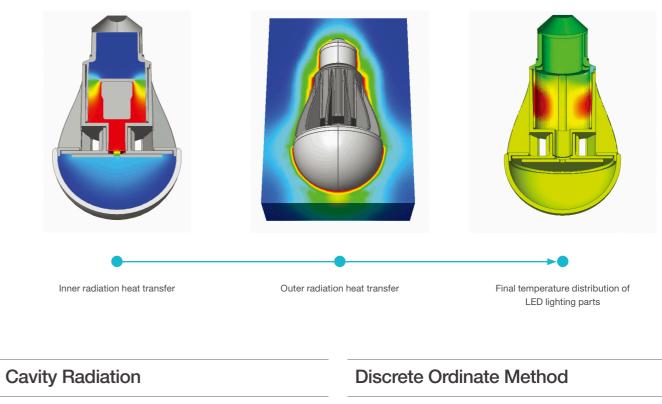
SOLVER

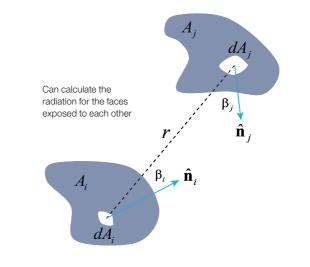

Radiation heat transfer analysis

When radiation phenomena of the analysed structure need to be considered, radiation heat transfer analysis can be used.

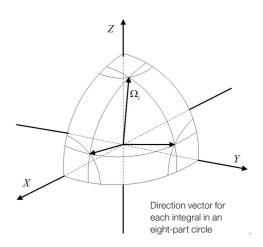


An increase in ambient air temperature due to heat generation in the heat sink




Forced convection analysis by fan

Applications : Natural Convection by Heat Sink, Forced convection analysis by fan


Applications : Semiconductor wafer chuck, electric heater, Distribution panel

Applications : Heat treatment equipment for semiconductors and displays, furnaces, combustion engines, automotive under-hoods, headlines.

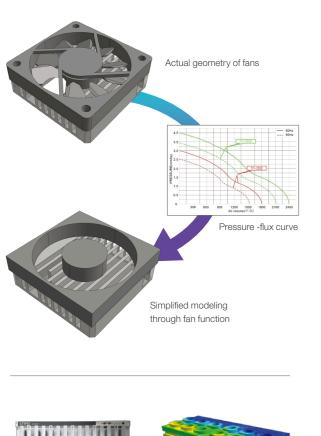
Dedicated Fluid Analysis Features for Effective Practical Design

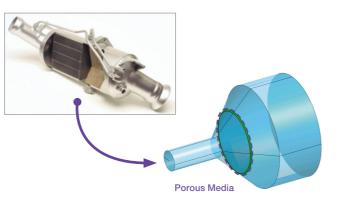
SOLVER

Auto-generation of fans

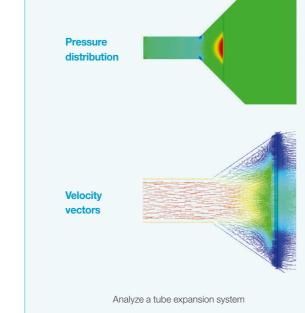
Instead of modeling the rotation of fans, you can easily model fans by inputting pressure-flux curve.

SOLVER

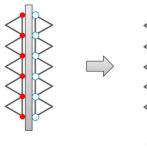

Porous model

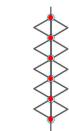

Use porous media function to analyze a tube expansion system in which microfiber mediums are used to expend flow paths.

SOLVER

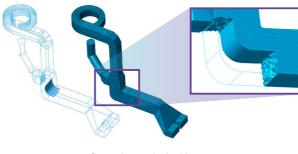

Thin wall model

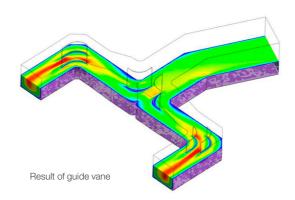
Thin wall is modeled as a face helps create efficient meshing.





Application example of porous model


Applications : filters, perforated plates, grills, dust collectors, laminated materials, car exhaust systems



Thin wall

Thin wall - node merge

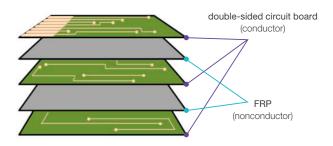
Generation mesh of guide vane using thin wall modeling

Applications : electronics baffle, duct guide vane

Applications : cooling fans for electronic equipment, clean room FFU, fans for production equipments

Temperature distribution inside the equipment

.........


s for electronic equipment, Applications

SOLVER

Thermal resistance \cdot PCB model

Effective heat transfer analysis of board level system by reflecting thermal resistance characteristics of semiconductor package and PCB.

Printed Circuit Board Total Thickness					
				0.001	m
Substra	ate (Dielectric)				
Material		2: CFD Solid-1 \sim			
Traces					
Material		2: CFD S	olid-1	~	1
	Thicknes	s(m)	Cover	age(%))
1		0.0005			30
2		0.00025			30
3		0.00025			30
+					

 $k_{inplane} = \frac{\sum k_i t_i}{\sum t_i} \qquad k_{normal} = \frac{\sum t_i}{\sum (t_i / k_i)}$

 $k_i = f_i k_{cu}$ or $k_i = k_{\text{FR4}}$

Applications : semiconductor package, Board level system, PCB system

Functionality for **Specialized Design Issues**

SOLVER

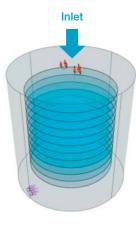
Mixture

Calculate the fraction of a particular substance by mixing two or more types of fluids into one area using diffusion properties.

SOLVER

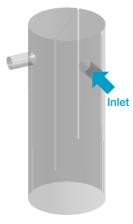
Particle

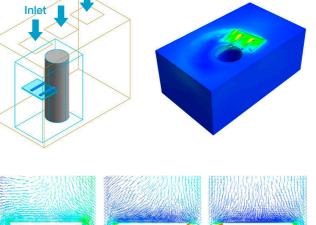
Analysis including small particles such as aerosols can be performed and the speed and travel path of particles can be predicted.

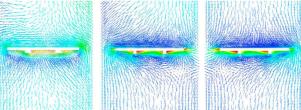

SOLVER

Overset Mesh

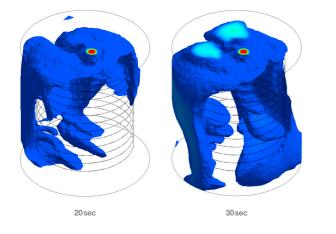
Can easily calculate by setting the surroundings of objects with complex behavior as Overset Mesh.


CVD SiC chamber

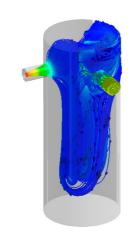

Mixture model

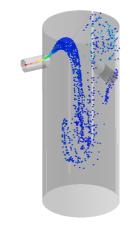


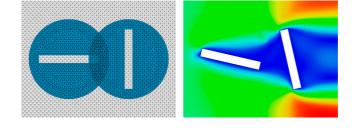
Oil catch can



Particle model




Analysis of clean room equipment using Overset Mesh

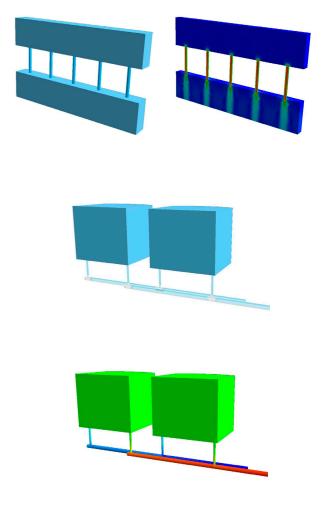

Results of mass fraction

Particle path

Particle spread

Analysis of mixer rotation

Applications : diffusion of pollutants, mixed gas valve, CVD chamber, agitator's rotation **Applications** : Oil catch can, oil injection, cyclone, clean room equipment, collection efficiency


Applications : agitator's rotation, clean room equipment, analysis considering cross-movement, analysis of switchgear

SOLVER

1- Dimention modeling

The plant's large piping system is set up as a one-dimensional element, dramatically reducing analysis time and enabling efficient calculation.

Analysis of tank-piping linkage system using one-dimensional flow analysis function

Applications : Tank-to-pipe linkage, plumbing system

Utilization of Various Practical Analyses through Specialized Functionality

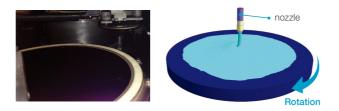
SOLVER

Mesh deformation module

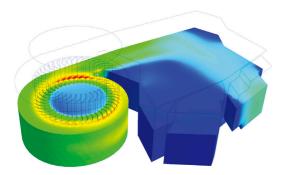
When product perform rotation or linear motion together with hydraulic machine, this module can be used.

SOLVER

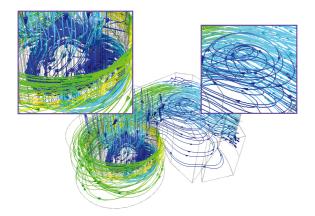
Multi-phase flow module


When fluid and gas of the free water surface need to be analyzed at the same time, this module can be used.

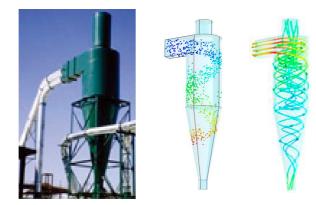
SOLVER


Species advection module

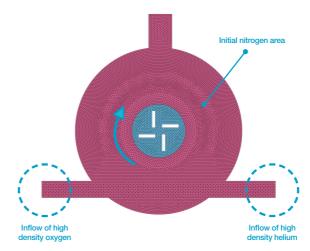
This module can be used to observe the diffusion phenomena of mixed materials defined by concentration fraction.



Fluid analysis of a rotating wafer



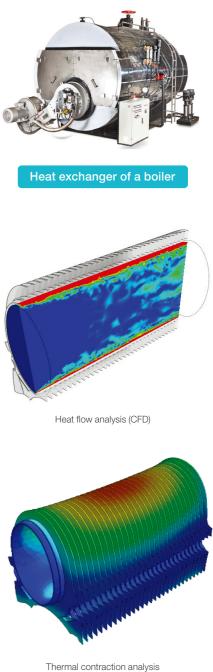
Textile guideline fluid nozzle


Performance analysis of rotation machine

behavior of particles introduced into the cyclone

Mixed gas valve

3.0 sec


4.0 sec

SOLVER

Fluid - structure coupled analysis module

The analysis results of CFD analysis are used in structural analysis to calculate deformations and stresses.

I hermal contraction analysis (structural heat transfer analysis)

Details Linear Static Analysis **NFX** STR Modal Analysis **Linear Static Analysis Buckling Analysis Composite Materials Analysis** Nonlinear Material Analysis Nonlinear Static Analysis Nonlinear Geometry Analysis Nonlinear Contact Analysis Heat Transfer Analysis Heat Analysis Heat Stress Analysis Joule Heating Analysis Structural Transient Response Analysis **Response Spectrum Analysis** Linear Dynamic Analysis Frequency Response Analysis **Random Vibration Analysis Explicit Dynamic Analysis** Nonlinear Dynamic Analysis Implicit Dynamic Analysis **Topology Optimization Analysis** Optimization Size Optimization Analysis S-N curve (Stress-life Method) / ε-N curve (Strain-life Method) Fatigue Analysis **Thermal Fatigue Analysis Random Vibration Fatigue Analysis** Steady/Unsteady Fluid Flow Analysis **NFX** CFD Compressible/Incompressible 14 Turbulence models Porous Media **General Fluid Flow Analysis** 1-D Pipe Model Fan Boundary Condition MRF (Moving Reference Frame) Conduction/Convection/Radiation Heat Transfer Analysis Conjugate Heat Transfer/1-way FSI CFD Joule Heating/PCB Heat Resistance Model Stretchable Mesh Mesh Deformation Analysis Sliding Mesh **Overset Mesh Mixture Analysis** Species transport Level Set Multi-phase Analysis Wave Elevation Analysis Discrete Phase Model Thermal 1-way coupled Analysis FSI Structural 1-way coupled Analysis (Fluid-Structual interaction)

Structural 2-way coupled Analysis

NFX CFD

MIDAS

nfx.midasuser.com